4.13. Защита металлических материалов от коррозии в растворах кислот
Для защиты металлических материалов от коррозии в растворах кислот используется ряд способов.
1.Применение кислотостойких металлов и сплавов.
-термодинамически устойчивые металлы, например платина и медь в растворах
H2SO4и HCl;
-пассивирующиеся сплавы;
к пассивирующимся в растворах кислототносятся:
- углеродистые и низколегированные стали, пассивирующиеся в 50…60% - ном растворе азотной кислоты;
- хромистые стали, которые по уровню коррозионной стойкости делятся на три основные группы, содержащие 13,17 и 25…28% хрома;
- стали, содержащие 13% хрома, обладающие устойчивостью в слабых растворах кислот. Это стали мартенситного класса (20Х13, 30Х13, 40Х13); их термическая обработка – закалка и низкий (≤ 450єС) отпуск;
- стали, содержащие 17% хрома (12Х17, 08Х17, 08Х18Т1) и устойчивые в 65% - ной азотной кислоте до 50°С; это стали ферритного класса.
- стали с повышенным до 25…28% хрома , имеющие более широкий температурный интервал в области малых и средних концентраций растворов кислот (ферритный класс); недостаток ферритных сталей (15Х25Т, 15Х28, 15Х28Т) – повышенная хладноломкость и склонность к росту ферритного зерна даже при относительно кратковременном нагреве выше 850…900єС; присутствие углерода и азота в составе сталей – причина возникновения межкристаллитной коррозии;
- хромоникелевые стали, содержащие ~ 18% хрома и 10% никеля и известные в мировой практике как стали типа 18 - 10: 12Х18Н9, 12Х18Н10Т, 08Х18Н12Б и др; это стали аустенитного класса (титан и ниобий вводятся для снижения склонности аустенитных к межкристаллитной коррозии). Эти стали, пассивируясь, приобретают высокую коррозионную устойчивость в 65 - и 80 % - ной азотной кислоте при температурах 85 и 65°С соответственно; в 100% - ной серной кислоте до 70єС; в смеси азотной и серной кислот (25% HNO3 + 70% H2SO4; 10% HNO3 +60% H2SO4) при 60°С; в 40% - ной фосфорной кислоте при 100°С. Эти стали устойчивы в растворах органических кислот: уксусной, лимонной, муравьиной при 100°С;
- стали на хромоникелевой основе с высоким содержанием кремния (≤ 6%), например сталь марки 02Х8Н22С6; эти стали устойчивы в сильноокислительных средах, в частности в кипящей концентрированной азотной кислоте;
- сплавы на основе никеля и железа (никонель); эти сплавы специально созданы для работы в серной кислоте и средах, содержащих сероводород (04ХН40МДТЮ, 40НКХТЮМД);
- сплавы на основе никеля; различают три основные системы таких сплавов: никель – молибден, никель – хром, никель – молибден – хром; в бинарных сплавах никель – молибден (хастеллой), например Н70М27, Н70МФ, молибден повышает коррозионную стойкость сплава в растворах соляной кислоты тем больше, чем больше его содержание в сплаве; эти сплавы устойчивы также в растворах H2SO4, H3PO4;
- сплавы системы никель – хром (ХН45В) с высоким содержанием хрома – не менее 50…60%, имеют высокое сопротивление коррозии в растворах азотной кислоты, в том числе и с добавками ионов фтора;
- сплавы системы никель – молибден – хром (ХН65МВ) с 15% - ми молибдена и 15% - ми хрома, использующиеся для работы во влажном хлоре, смесях кислот;
- сплавы никеля с медью – монель-металл, например марки НМЖМц 28 − 2,5 − 1,5, обладающие устойчивостью, в частности, в неорганических кислотах.
Следует в завершение, отметить, что сплавы на основе никеля весьма чувствительны к присутствию примесей внедрения, прежде всего углерода, служащих причиной межкристаллитной коррозии или способствующих ее развитию. Поэтому современные никелевые сплавы содержат ≤ 0,006…0,015% углерода. Легирование ниобием и ванадием уменьшает склонность к межкристаллитной коррозии.
-сплавы, образующие труднорастворимые пленки продуктов коррозии;
К этой группе сплавов относят сплавы системы железо-кремний, обладающие коррозионной стойкостью в растворах HNO3,H2SO4,HCl,H3PO4, а также железо-углеродистые сплавы (стали) в концентрированной серной кислоте.
-металлические материалы, особо чистые по катодным примесям;
Чистые железо, цинк, алюминий весьма устойчивы в слабокислых растворах.
2.Введение в растворы кислот добавок, тормозящих процесс коррозии.
К замедлителям коррозии металлических материалов относятся так называемые травильные присадки. Катионы As3+,Bi3+ ,образующиеся при растворении присадок восстанавливаются на катодных участках поверхности корродирующего материала и замедляют процесс восстановления ионов водорода, обладая высоким перенапряжением водорода.
3.Нанесение на поверхность металлических материалов кислотостойких защитных покрытий.
-металлические защитные покрытия;
С целью предотвращения коррозии углеродистых сталей в растворах HCl и HNO3 последние могут подвергаться термосилицированию.
Для повышения устойчивости углеродистых сталей в серной кислоте используется свинцевание поверхности.
-создание плакирующего слоя;
Плакирование – механотермический метод получения защитного металлического покрытия. Оно образуется в результате совместной прокатки, горячей прессовки, нагрева под давлением двух слоев металлических материалов, один из которых играет роль покрытия. Толщина покрытия обычно составляет 10-20% от толщины основного (защищаемого) металла.
Например, для защиты малоуглеродистой низколегированной стали марки 09Г2С, используется метод плакирования – создания защитного слоя из никелевых сплавов типа ХН65МВ, Н70МФ и др.
-неметаллические органические покрытия;
Чаще других используются фенол - формальдегидные, эпоксидные, кремнийорганические смолы, а также асфальтобитумные покрытия. Особую ценность имеют кремнийорганические смолы – органические соединения, в цепях которых кислород частично замещен кремнием. Смешивая их с оксидами титана, можно получать покрытия, стойкие к нагреву до 6000С.
4.Применение устойчивых неорганических материалов
-стекло и эмали;
Эмали – стекловидные покрытия. Кислотостойкие эмали изготавливают с высоким содержанием SiO2 ,а кислото-щелочестойкие в своем составе имеют диоксид циркония. Эмали получают сплавлением шихты (песок, мел, глина и пр.) и плавней (бура, сода фтористые соли). Их высокая химическая стойкость обусловлена присутствием буры и кремнезема. Эмалевые покрытия получают погружением в расплав или пульверизацией с последующим обжигом до спекания в печи при температуре 880-1050 0С.
-керамика;
керамика – неорганический материал, получаемый обжигом глинистых материалов, состоящих из небольших кристаллов гидратированных алюмосиликатов. Из керамики изготавливают кислотостойкие изделия (плиты, кирпич).
-графит и графитовые материалы;
эти материалы вследствие их универсальной химической стойкости используются в противокоррозионной технике как футеровочные изделия (плитки, пластины блоки).
-каменное литье и ситаллы;
каменное литье (КЛ) – материал, получаемый кристаллизацией из расплава, основой которого является диабаз, базальт, андезит. Изделия из КЛ: плитки, фасонные детали, трубы.
ситаллы – неметаллический неорганический стеклокристаллический материал, получаемый кристаллизацией стекломассы при наличии в ней нуклеаторов (центров кристаллизации). Из ситаллов изготавливают листы (футеровочный материал, трубы, фасонные изделия).
Изделия из КЛ и ситаллов обладают высокой кислотостойкостью при температурах не более 1000С.
5.Электрохимические способы защиты.
В этом качестве чаще используется способ анодной защиты, базирующийся на переводе металлического материала в пассивное состояние. На практике анодную защиту чаще применяют для нержавеющей стали, содержащей хром, который обладает ярко выраженными пассивационными свойствами. Ее применяют также для титана и в некоторых случаях для углеродистой стали.