Get Adobe Flash player

Адгезия эпоксидных смол к металлам

Эпоксидные смолы применяются как адгезивы для металлов в несиловых конструкциях, а также в качестве конструкционных клеев.

При взаимодействии эпоксидной смолы с металлом на формирование адгезионного контакта оказывает влияние температурный режим. Смола должна обладать определённой подвижностью, чтобы заполнить многочисленные углубления на поверхности металла. Поэтому повышение температуры в момент формирования адгезионного контакта вызывает снижение вязкости и благоприятствует достижения более высокой адгезионной прочности.

В зависимости от количества отвердителя вели­чина адгезии эпоксидных смол обычно изменяется по кривой с максимумом. При малом содержании отвердителя адгезия обусловлена взаимо­действием с поверхностью металла свободных эпоксидных групп. С увеличением количества отвердителя число свободных эпоксид­ных групп уменьшается. Поскольку при этом снижается и адгезия, можно сделать вывод, что связь образовавшихся гидроксильных и аминогрупп с поверхностью окисной пленки металла слабее, чем связь эпоксидных групп. Эпоксидная группа способствует повышению ад­гезии особенно эффективно в условиях, благоприятствующих рас­крытию эпоксидного кольца (при введении веществ, содержащих активные атомы водорода, например бензидина). Раскрытие этиленоксидного цикла сопровождается об­разованием химических связей с окисной пленкой металла.

Однако предположения о том, что адгезионные свойства эпо­ксидных смол обусловлены главным образом наличием эпоксид­ных групп, разделяются не всеми исследованиями. Имеются эксперименты по зависимости смачиваемости полярных поверхностей эпоксидными смолами от содержания в смоле гидроксильных групп. Сопротивление сдвигу склеенных эпоксидными смолами алюминиевых образцов прямо пропорционально содержанию гидроксильных групп в эпо­ксидных смолах, отвержденных фталевым ангидридом. Зависимость приведена на рисунке.

Зависимость сопротивления сдвигу клеевых соединений алюминия от содержания гидроксильных групп в эпоксидной смоле (отвердитель – фталевый ангидрид).

Эпоксидная, и гидроксильная группы, будучи весьма поляр­ными и реакционноспособными, играют большую роль в адгезии эпоксидных смол к различным субстратам, в том числе к ме­таллам. Роль какой из этих групп является главнее, однозначно ответить нельзя. Всё зависит от конкретных условий — вида и количества отвердителя, природы поверхности субстрата и других факторов.

При адгезии полимера к металлу роль химической при­роды адгезива оказывается решающей. Важно чтобы адгезив не просто содержал в определенном количестве полярные группы, а чтобы эти группы обладали способностью вступать в интенсивное взаимодействие с поверхностными группами суб­страта, например выполняли роль доноров электронов. Чем более четко выражены электронодонорные свойства функциональных групп, тем выше их адгезия к металлу. Между атомами металла и углеводородами в си­стеме адгезив—субстрат возможны химические связи. Между углеводородом и металлом может возникнуть ковалентная связь.

Несмотря на возможность химического взаимодействия между металлом и углеводородами, значительно больший интерес для адгезионных систем представляет механизм взаимодействия полимер­ных адгезивов с окисной пленкой, образующейся практически на любой металлической поверхности. Благодаря этому во многих случаях на границе полимер—металл могут возникать ионные связи. Чаще всего этот тип связей реализуется при контакте ме­таллов с карбоксилсодержащими и гидроксилсодержащими по­лимерами. Между поверхностью металла, покрытой гидратированной окисной пленкой, и функциональными группами полимеров могут возникать различные химические связи. Эпоксидные смолы с поверхностью металла реагируют по схеме:

Известно что окисные пленки на таких металлах, как алюминий, цинк и олово весьма компактны, прочны, имеют небольшую толщину, отличаются хорошими защитными свойствами и хорошей сцепляемостью с металлом. Окисные пленки на меди, наоборот, отличаются большой толщи­ной, значительным количеством дефектов и слабой связью с металлом. Поэтому влияние окисных пленок на металлах приводит к разным результатам адгезии. В связи с эти применяют различные способы химической обработки поверхности металлов.

Эксперименты по склеиванию металлов поли­мерными адгезивами, нанесению на металлы лакокрасочных, элек­троизоляционных и других покрытий свидетельствует о том, что долговечность связи полимер — металл зависит во многих слу­чаях от таких свойств полимеров, как термостойкость, коэф­фициент теплового расширения, влагостойкость, озоностойкость, морозостойкость, прочность, модуль упругости и др. Чем меньше различие коэффициентов теплового расширения полимера и метал­ла, тем устойчивее оказывается адгезионное соединение полимер — металл к воздействию высоких температур. Напря­жения, возникающие в процессе фор­мирования клеевых соединений и по­крытий, также влияют на долговеч­ность связи полимер—субстрат

Поделитесь с друзьями!

Опубликовать в своем блоге livejournal.com